0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 InnermostUnusableRulesProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxWeightedTrs
↳7 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedTrs
↳9 CompletionProof (UPPER BOUND(ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxTypedWeightedCompleteTrs
↳13 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳14 CpxRNTS
↳15 InliningProof (UPPER BOUND(ID), 87 ms)
↳16 CpxRNTS
↳17 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 CpxRNTS
↳19 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 108 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 6 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 79 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 43 ms)
↳30 CpxRNTS
↳31 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳32 CpxRNTS
↳33 IntTrsBoundProof (UPPER BOUND(ID), 104 ms)
↳34 CpxRNTS
↳35 IntTrsBoundProof (UPPER BOUND(ID), 46 ms)
↳36 CpxRNTS
↳37 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳38 CpxRNTS
↳39 IntTrsBoundProof (UPPER BOUND(ID), 333 ms)
↳40 CpxRNTS
↳41 IntTrsBoundProof (UPPER BOUND(ID), 43 ms)
↳42 CpxRNTS
↳43 FinalProof (⇔, 0 ms)
↳44 BOUNDS(1, n^1)
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(X)) → X
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
f(0) → cons(0, n__f(n__s(n__0))) [1]
f(s(0)) → f(p(s(0))) [1]
p(s(X)) → X [1]
f(X) → n__f(X) [1]
s(X) → n__s(X) [1]
0 → n__0 [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__0) → 0 [1]
activate(X) → X [1]
0 => 0' |
f(0') → cons(0', n__f(n__s(n__0))) [1]
f(s(0')) → f(p(s(0'))) [1]
p(s(X)) → X [1]
f(X) → n__f(X) [1]
s(X) → n__s(X) [1]
0' → n__0 [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__0) → 0' [1]
activate(X) → X [1]
f(0') → cons(0', n__f(n__s(n__0))) [1]
f(s(0')) → f(p(s(0'))) [1]
p(s(X)) → X [1]
0' → n__0 [1]
s(X) → n__s(X) [1]
f(X) → n__f(X) [1]
s(X) → n__s(X) [1]
0' → n__0 [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__0) → 0' [1]
activate(X) → X [1]
f(X) → n__f(X) [1]
s(X) → n__s(X) [1]
0' → n__0 [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__0) → 0' [1]
activate(X) → X [1]
f :: n__f:n__s:n__0 → n__f:n__s:n__0 n__f :: n__f:n__s:n__0 → n__f:n__s:n__0 s :: n__f:n__s:n__0 → n__f:n__s:n__0 n__s :: n__f:n__s:n__0 → n__f:n__s:n__0 0' :: n__f:n__s:n__0 n__0 :: n__f:n__s:n__0 activate :: n__f:n__s:n__0 → n__f:n__s:n__0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
activate
0'
f
s
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
n__0 => 0
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ s(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ s(s(activate(X2))) :|: z = 1 + (1 + X2), X2 >= 0
activate(z) -{ 2 }→ s(f(activate(X1))) :|: X1 >= 0, z = 1 + (1 + X1)
activate(z) -{ 2 }→ s(0') :|: z = 1 + 0
activate(z) -{ 2 }→ f(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ f(s(activate(X''))) :|: z = 1 + (1 + X''), X'' >= 0
activate(z) -{ 2 }→ f(f(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 2 }→ f(0') :|: z = 1 + 0
activate(z) -{ 1 }→ 0' :|: z = 0
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
0' -{ 1 }→ 0 :|:
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ s(s(activate(X2))) :|: z = 1 + (1 + X2), X2 >= 0
activate(z) -{ 2 }→ s(f(activate(X1))) :|: X1 >= 0, z = 1 + (1 + X1)
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(X''))) :|: z = 1 + (1 + X''), X'' >= 0
activate(z) -{ 2 }→ f(f(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
{ 0' } { f } { s } { activate } |
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: ?, size: O(1) [0] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: ?, size: O(n1) [1 + z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ f(0) :|: z = 1 + 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] s: runtime: ?, size: O(n1) [1 + z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ s(0) :|: z = 1 + 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] s: runtime: O(1) [1], size: O(n1) [1 + z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] s: runtime: O(1) [1], size: O(n1) [1 + z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] s: runtime: O(1) [1], size: O(n1) [1 + z] activate: runtime: ?, size: O(n1) [z] |
0' -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s :|: s >= 0, s <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1, z = 1 + 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
0': runtime: O(1) [1], size: O(1) [0] f: runtime: O(1) [1], size: O(n1) [1 + z] s: runtime: O(1) [1], size: O(n1) [1 + z] activate: runtime: O(n1) [14 + 4·z], size: O(n1) [z] |